
APPENDIX
A. Results Visualization

We encourage the reader to visit our website
(robot-flare.github.io) for visualizations of
trajectories generated by FLaRe both in simulation and
in the real world, including performances visualization,
behavior analysis, and failure mode analysis.

B. Hyperparameter

Training and Model Details

Parameter Value
Total Rollouts 32
Learning Rate 0.0002
Mini Batch per Update 1
Update Repeats 4
Max Gradient Norm 0.5
Discount Value Factor 𝛾 0.99
GAE 𝜆 0.95
PPO Surrogate Objective Clipping 0.1
Value Loss Weight 0.5
Entropy Loss Weight 0.0
Steps for PPO Update 128
Transformer State Encoder Layers 3
Transformer State Encoder Hidden Dims 512
Transformer State Encoder Heads 8
Causal Transformer Deocder Layers 3
Causal Transformer Deocder Hidden Dims 512
Causal Transformer Deocder Heads 8

TABLE IV: Hyperparameters for training and model archi-
tecture.

C. Number of Training Steps

The base SPOC model that we evaluted and fine-tuned
upon is trained for 50k gradient update steps on a total
of 100k episodes of demonstrations across the CHORES
tasks, where the training hyperparameter and training data
is exactly the same as in the original SPOC paper.

For navigation tasks that do not involve manipulating
objects (i.e. ObjectNav and RoomVisit), FLaRe performs RL
fine-tuning for 20M steps, while all other fair-comparison
baseline methods perform RL training for 60M steps. For
mobile manipulation tasks (i.e. Fetch and Pickup), FLaRe
performs RL fine-tuning for 50M steps, while all other fair-
comparison baseline methods perform RL training for 100M
steps. For adaptation tasks, we run FLaRe fine-tuning for
50M steps on ObjNavRelAttr and ObjNavAfford, and 20M
steps on RoomNav. For cross-embodiment, we run FLaRe
for 30M steps.

All of the aforementioned experiments use the same base
SPOC mode, with exactly the same set of hyperparameters.

D. CHORES Benchmark
A big portion of FLaRe’s evaluation is carried out on

the CHORES benchmark. We provided detailed information
about this benchmark, including the observation space, action
space, and task specifications.

1) Observation Space: The observation space of
CHORES consists of two ego-centric 384 × 224 RGB
camera pointing towards orthogonal directions, where one
points towards the direction of navigation and the other
points at the arm. Additionally, a natural language text
instruction is re-sampled at the start of each episode and
appended to the observation to specify what the robot
should be doing.

2) Action Space: The action space of CHORES consists
of 20 discrete actions: Move Base (± 20 cm), Rotate Base
(±6◦, ±30◦), Move Arm (x, z) (±2 cm, ±10 cm), Rotate
Grasper (±10◦), pickup, dropoff, done with subtask, and
terminate.

3) Tasks Specifications: We describe the CHORES tasks
in Table. V. For each task, if the robot exceeds the maximum
steps, the episode is terminated and marked as failed.

For each task, we splited a total of 191,568 houses from
ProcThor [46] into training and testing sets with a ratio of
10:1, to ensure that the test evaluation is conducted in unseen
houses.

E. The SPOC Model
In this work, we use a slightly modified version of the

SPOC model [7] inspired by Poliformer [10], where the
transformer decoder block in SPOC is replaced by the
decoder from Llama 2 LLM [64] to speed up training
and inference. At each step, the SPOC model takes in the
new observations consisting of two RGB images and a
text instruction. Each of these images are separately passed
through a frozen vision transformer model (DinoV2 [53])
to extract a set of visual tokens. These tokens, along with an
embedding of the natural language instructions using a pre-
train text encoder T5 [65], are summarized by a transformer
state encoder to produce the observation representation. A
causal transformer decoder then decodes the observations
feature across all steps within the current episode into a belief
vector that is passed through an actor head to generate the
action prediction. We provide a visualization of our model in
Fig. 7, and explain each of these components in detail below.

1) Vision Transformer Model: We use DINOv2 as the
visual foundation backbone because of its remarkable ability
to make dense predictions that generalize across sim and real.
Our input to the visual backbone are two RGB observations
𝑖𝑎 and 𝑖𝑏. 𝑖𝑎 ∈ R𝐻×𝑊×3 is captured by the navigation camera
and 𝑖𝑏 ∈ R𝐻×𝑊×3 is captured by manipulation camera, where
𝐻 and 𝑊 are the height and width of the image. The
visual backbone then produces a patch-wise representation
𝑟 ∈ R𝐻

14 ×
𝑊
14 ×ℎ, where ℎ is the hidden dimensions of the visual

representations. 𝑟 is then reshaped and projected to generate
visual tokens 𝑣raw ∈ R𝑛patch×𝑑encoder . A learnable camera-type
embedding is then added to this visual tokens to ensure
the model can differentiate between the navigation and the

robot-flare.github.io


Task Description & Example Max Steps
ObjectNav Locate an object category: “find a mug” 600
PickUp Pick up a specified object in agent line of sight: “pick up a mug” 600
Fetch Find and pick up an object: “locate a mug and pick up that mug” 600
RoomVisit Traverse the house. “Visit every room in this 5-room house. Indicate

when you have seen a new room and when you are done.”
1000

TABLE V: CHORES tasks.

Tr
an

sf
or

m
er

 S
ta

te
 E

nc
od

er

Ti
m

e
t

t−
1

t−
2

t−
3

t−
4

Pr
ev

io
us

 
Ac

tio
ns

at−5
at−4

at−3
at−2

at−1

St
at

e 
Fe

at
ur

es
st−4

st−3
st−2

st−1
st

st

Pr
ed

ic
te

d 
Ac

tio
ns

at−4
at−3

at−2
at−1

at

Ac
tio

n 
H

ea
d

C
rit

ic
 

H
ea

d

Va
lu

e 
Es

tim
at

io
n

et−4
et−3

et−2
et−1

etbt

Causal Transformer Decoder

qt

kt

vt

At
te

nt
io

n 
La

ye
r

Nx

Value cache

Key cache

Vi
si

on
 T

ra
ns

fo
rm

er
 M

od
el

M
LP

it
a

rt

Navigation Camera STATE
f

g

G
oa

l 
Sp

ec
ifi

ca
tio

n 
En

co
de

r

M
LPSearch for 

a sofa

Goal Specification

M
LP

it
b

rt

Manipulation Camera

Fig. 7: A visualization of the network architecture of the transformer-based SPOC model that FLaRe fine-tunes upon.

manipulation cameras, resulting in the final visual features 𝑣.
To ensure sim-to-real transfer, we freeze the DinoV2 weight
throughout training.

2) Transformer State Encoder: This module summarizes
the observations at each timestep as a vector 𝑠 ∈ R𝑑 . The
input to this encoder includes the visual representation 𝑣,
the text feature 𝑔, and a learnable STATE token 𝑓 . We
concatenate these features together and feed them to a non-
causal transformer encoder. This encoder then returns the
output corresponding to the STATE token as the state feature
vector. The transformer state encoder digests both visual and
text features, and can thus be seen as generating a text-
conditioned visual state representation.

3) Causal Transformer Decoder: To deal with partial
observability and handle long-horizon tasks, SPOC uses a
causal transformer decoder to perform explicit memory mod-
eling over time. The causal transformer decoder consumes
the visual representations generated by the transformer state
encoder, additively combines them with sinusoidal temporal
position encodings and learned previous time step action
embeddings, and generates the belief vector used for action
generation.

F. Real Robot Setup
Following SPOC [7], we equipped our Stretch RE-1 robot

with two identical Intel RealSense 455 fixed cameras, namely
the navigation and the manipulation camera. These cameras
have a vertical field of view of 59◦ and are capable of
capturing 1280×720 RGB-D images. Both of these cameras
point slightly down, with the horizon at a nominal 30◦, to
optimize the agent’s perspective of its functional workspace.
The images returned by these cameras are first resized to 396

× 224, and the cropped to 384 × 224, to match the image
observations during training.

Same as SPOC, we assess the performance of our mod-
els on ObjectNav and Fetch in a 6-room apartment also
used in Phone2Proc [62], Pickup in RoboThor [66], and
RoomVisit in both environments. The 6-room apartment
contains environment variations wholly unseen at train time,
including a new configuration (multiple rooms off a long
corridor), two new room types (office and corridor), rooms
with non-orthogonal wall alignment, and many unseen object
instances. For each object in ObjectNav and Fetch, we tested
three starting positions: once from the living room, once from
the middle of the corridor, and once from the kitchen. We
visualize these starting locations in Fig. 5. Below, we provide
objects that we tested upon in the real world for each tasks.

1) ObjectNav: Target objects are Sofa, Bed, Chair, Apple,
Vase, and Houseplant, each from three starting positions.

2) Fetch: Target objects are Apple, Vase, and Houseplant
from the same three starting positions. In one small change
from ObjectNav episodes, object instances are replaced with
instances which better fit into Stretch’s grasping envelope
and in some cases at a better height for interaction, but
availability and placement are nearly identical.

3) PickUp: Objects are placed on three different surfaces
(coffee table, desk, and nightstand) at three different heights.
Objects are Apple, Houseplant, Spray Bottle, Mug, and Vase.

4) RoomVisit: The full 6-room apartment is explored,
and then partitioned into two 3-room apartments to evaluate
the ability of SPOC to explore large and small spaces. We
additionally explore a section of RoboTHOR and attached
workroom as a novel 3-room apartment.


